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ABSTRACT

Artificial neural networks (ANNs) and fuzzy logic are complementary technologies. ANN's

extract information from systems to be learned or controlled, while fuzzy techniques mainly use

verbal information from experts. Ideally, both sources of information should be combined. For

example, one can learn rules in a hybrid fashion, and then cah'brate them for better whole-system

performance. ANNs offer universal approximation theorems, pedagogical advantages, ve_g_ high-

throughput hardware, and links to neurophysiology. Neurocontrol -- the use of ANNs to directly
, -o

control motors or actuators, etc. -- uses five generalized designs, related to control theory, which can

work on fuzzy logic systems as well as ANNs. These designs can: copy what experts do instead of

what they aE_; learn to track trajectories; generalize adaptive control; maximize performance or

minimize cost over time, even in noisy environments. Design tradeoffs and future directions are

discussed throughout.

This represents personal views only, not the official views of NSF. It is forthcoming in a special
issue of IJAR. As government work, it is legally in the public domain.
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ANNs and Fuzzy Logic in General

Neurocontrol is still a small part of the greater neural network community. Most people use

ANNs for applications like pattern recognition, diagnostics, risk analysis, and so on. They mostly

use ANNs to learn static mappings from an "input vector," _, to a "target vector," Y. For example,

X might represent the pixels which make up an image, wh;!e 3( might represent a classification of
.. .o

that vector. Given a training set made up of pairs of X and ._.,x'the network can "learn" the rhapping,

by adjusting its weights so as to perform well on the training set.

This kind of learning is called "supervised learning." There are many forms of supervised

learning used by different researchers, but the most popular is basic backpropagation[1]. Basic

backpropagation is simply a unique implementation of least squares estimation. In basic

backpropagation, one uses a special, efficient technique to calculate the derivatives of square error

with respect to all ',he weights or parameters in an ANN; then, one adjusts the weights in proportion

to these derivatives, iteratively, until the derivatives go to zero. The components of X and Y may

be l's and O's, or they may be continuous variables in some finite range.

Fuzzy logic is also used, at times, to infer wetl-dermed mappings. For example, if X is a set of

data characterizing the state of a factory, and 3( represents the presence or absence of various

breakdowns in the factory, then fuzzy rules and fuzzy inference may be used to decide on the

likelihood that one of the breakdowns may be present, as a function of X.

Which method is better to use, when?
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The simplest answer to this question is as follows: since ANNs extract knowledge from

databases_and fuzzy logic extracts rules from human experts, we should simply decide _ we trust

more, in th._____eparticular application. (When in doubt, we can try both and try for an evaluation after

the fact.) In principle, empirical data represents the real bottom line while expert judgment is only

a secondary source; however, when the empirical data is too limited to allow us to learn complex

relations, expert judgment may be all we have.

In many applications, there are some _ of the problem for which we have adequate data,

and others for which we do not. In that case, the practical approach is to divide the problem up,

and use ANNs for part and fuzzy logic for another part. For example, there may be an

intermediate proposition R which has an important influence on _.Y;we may build a neural net to

map from X to R, and a fuzzy logic system to map X and R into Y_, or vice-versa. Amantr et al[2],

for example, have built a speech recognition system in which ANNs detect the features, and a fuzzy

logic system goes on to perform the classification. Many people building diagnostic systems have

taken similar approaches[3].

In the current literature, many people are using fuzzy logic as a kind of organizing framework,

to help them subdivide a mapping from X to Y into simpler partial mappings. Each one of the

simple mappings is associated with a fuzzy "rule" or "membership function." ANNs or neural

learn of these There are anetwork learning rules are used to actually , all mappings, large number

of papers on this approach, reviewed in [4].^Because these are typically very simple mappings -

with only one or two layers of neurons -- we can choose from a wide variety of neural network

methods to learn the mappings; however, since the ANNs only minimize error in learning the

individual rules, there is no guarantee that they will minimize error in making the overall inference

from X to Y. This approach also requires the availability of dat.._.&ain the training set for all of the

intermediate variables (little R) used in the partial mappings. Strictly speaking, this approach is a
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specialcaseof the previous paragraph; in the general case, some rules can be learned while others

come from experts.

Many people in fuzzy logic might say that fuzzy logic is more than just rules and inference.

There is also such a thing as fuzzy learning. In fact, much of the neural network literature on

learning (like backpropagation[1]) applies directly to _ well-behaved nonlinear network. It can

be applied directly to the inference structures used in fuzzy logic. We could easily get into a

situation where fuzzy logic people and neural network people use the exact same mathematical

recipe for how to adapt a particular network, and use different names for the same thing.

Personally, I would prefer to focus on the generalized mathematical learning rules, so that we can

speak a more universal language, and avoid distinctions without a difference.

There are some problems which cannot be easily subdivided into expert-based phrts and

learning-based parts. For example, there are theories of international conflict which involve a rich

structure, containing a large number of parameters known with varying degrees of confidence; it is

important to expose the entire structure to the discipline of historical testing ("backcasting" and

"calibration"). In situations like that, the best procedure is to combine fuzzy logic and learning. (In

Bayesian terms, one would regard this as a convolution of prior and posterior knowledge, to

determine the correct conditional probabilities, conditional upon all available information.) For

example, we can use fuzzy logic and interviews with experts to derive an initial structure, and

estimates of uncertainty. Then, one can use generalized backpropagation directly to adjust the

weights (or uncertainty levels or other parameters) in that network. We can even use

backpropagation to minimize an error measure like:

e - E {v,- ÷ E c w, - o)
J 1

where Cj is the prior degree of certainty about parameter Wj, and Wj t_ is the prior estimate of the
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parameter. This kind of convolution approach could also be applied, of course, to the learning of

independent rules or membership functions, as described in [4]. In a recent meeting to discuss long-

term strategic planning issues, I suggested a two-stage approach: (1) build up an initial inference

system or model using conventional techniques, which adapt individual rules or equations; (2) then -

- after assessing degrees of certainty - _ all of the weights in a "calibration" phase, using

backpropagation to make sure that the overall structure adequately fits the overall structure in

historical data.

So far as I know, the idea of applying backpropagation to a fuzzy logic network was first

published in 198815]. Matsuba of Hitachi, in unpublished work, f'trst proposed the use of equation

1. Backpropagation is important in this application, because it can adapt multilayer structures.

Backpropagation cannot be used to adapt the weights in a more conventional, Bool_n-logic

network. However, since fuzzy logic rules are differentiable, fuzzy logic and backpropagation are

more compatible. Strictly speaking, it is not necessary that a function be everywhere differentiable

to use backpropagation; it is enough that it be continuous and be differentiable almost everywhere.

Still, one might expect better results from using backpropagation with modified fuzzy logics, which

avoid rigid sharp corners like those of the minimization operator.

One reason for liking fuzzy logic, after all, is that it can do a better job than Boolean logic in

representing what actually exists in the mind of a human expert. This be.ing so, modified fuzzy

logics -- which are even smoother -- may be even better. Fu[6] has gotten good results applying

to simple fuzzy logic structures (using special rules to handle the corner points), while

Hsu et al[7] have proposed a modified logic. Presumably the fuzzy logic literature itself includes

many examples of smooth, modified fuzzy logics. Among the obvious possibilities are: (1) to use

simple ANNs themselves in knowledge representation; (2) to use functional forms similar to those

used by economists, in production functions and cost functions, with parameters to reflect the
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importance, the complementarity and the substitutability of different inputs.

Fuzzy logic has the advantage that it can be applied in a flexible way, using a different inference

structure for each case in the training set. This inference structure may contain logic loops, which

go beyond the capability of what ANN people call "feedforward" networks. The inference structure

may be a "simultaneously recurrent" network. Nevertheless, backpropagation can be used on such

inference structures (using the memory-saving methods in [8]) to calculate the derivatives of error

with respect to every parameter, at a cost less than the ebst of invoking the inference structure a

single time. Thus one can use backpropagation here as well. Hybrid systems like this may be too

expensive to justify for unique applications, but they make considerable sense in generalized

software systems.

When complex inference is required, in fuzzy logic as in conventional logic, the design of an

inference engine can be very tricky. Neurocontrol systems may be used, in essence, as inference

engines. In fact, I would argue that this is precisely how the human brain does inference -- that the

true "deep structure" of language is a collection of neural nets which learn, through experience, how

to perform more and more effective inference (,in a nonBoolean environment). Inference may be

more difficult than other forms of control problem; however, there are parallels between

neurocontrol systems and existing inference engines which suggest some real possibilities here.

Stinchcombe and White have proven (IJCNN 1989) that conventional ANN's can represent

essentially any well-behaved nonlinear mapping. However, in applications of ANNs, many

researchers have begun to encounter the limitations of _ static mapping. In recognizing dynamic

patterns[l], like speech or moving targets, or in real-world diagnostics[9], it is often necessary to add

memory of the past. As one adds such memory, it becomes more and more important to build up

robust .dynamic models of the system to be analyzed or controlled. Neural networks can do this[10],

in part by adapting intermediate features and developing representations which an expert might not
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have thought of.

Neurocontr01 in C.,encrtll

In 1988, neurocontrol was just beginning a major period of growth. At that time, NSF

sponsored a workshop on neurocontrol at the University of New Hampshire, chaired by W. Thomas

Miller[Ill, who brought together a small, mixed group of neural network people, control theorists

and experts in substantive application areas. In the very 6arly part of that workshop, a few people

echoed the old arguments about who is better -- control theorists or neural networkers. Within a

very short time, however, it became apparent that this issue was utterly meaningless, It was

meaningless because it revolved about a distinction without a difference. The reason for this is

illustrated in Figure 1.

INSERT FIGURE 1 (VENN DIAGRAM)

Figure 1 is a Venn diagram, telling us that neurocontrol is a subset both of neural network

research and of control theory. In the course of the workshop, it became apparent that the existing

work in neurocontrol could be reduced to five fundamental design strategies, each of which occurred

over and over again, with variations, in numerous papers. (Individual papers tend to highlight their

unique aspects, of course.) _All five turned out to be gg.0_g_ approaches which could be applied to

a_ large, sparse network of differentiable functions or to an even larger class of networks. One

may call these "functional networks," as opposed to neural networks. All five methods could be fully

understood as generic methods within control theory. By remembering that neurocontrol is a subset

of both disciplines, we are in a position to draw upon both disciplines in developing more advanced

designs and applications.
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This situation is particularly important to fuzzy logicians, because the inference structures of

fuzzy logic are themselves functional networks. In this paper, I will present numerous boxes labelled

as "neural networks," but evEg_ such box could just as easily be f'tlled in with a fuzzy inference

structure varying over time. In other words, every_ one of the five "neurocontrol" methods can also

be applied _ to fuzzy learning as well. In practice, one would often want to fill in different

boxes with different things -- perhaps an ANN for one box, a hybrid neural/fuzzy map (as described

in the previous section) for another, and a conventional fixed algorithm for a third. This kind of

mixing and matching is quite straightforward, once one understands the basic principles.

Why should we be interested at all in the special case where the functional network is built up

from the traditional kinds of artificial neurons? Why shou'.d we be interested in functional forms

close to the conventional form used in ANNs[1]:

- (2)

where:

s(z) - ? (s)
1 +e'S

(Here, x, represents the "output" or "activation" of a model neuron, while W_ represents a "weight"

or "parameter" or "connection strength" or "synapse strength.')

There are at least four reasons for paying attention to the special case represented by neural

networks: (1) the universal mapping theorems of White and Gallant and others; (2) the availability

of special purpose computer hardware; (3) the pedagogical value of the special case; and (4) the

link to the brain.

The theorems of White and others have excited great interest in the control community, because

they show that conventional ANNs do something very simi]ar to what Taylor series do -- provide

a basis for approximating an arbitrary nonlinear function. As with Taylor series, the nonlinearity
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is ve_' simple, offering a hope of workable practical tools.

The availability of special purpose computer hardware is a decisive factor in favor of ANNs.

There are many cases where a task can be done equally well using conventional sequential methods

or neural nets, and where both approaches/nvolve a sim//ar degree of computational complex/ty.

(For example, there are cases where an ANN can simply be trained to mimic the input-output

behavior of an existing algorithm.) In such cases, ANNs may have a decisive advantage in real-

world implementation, because of the hardware.

Intel, for example, recently produced a neural net chip -- now publicly available -- under

encouragement from the U.S. Navy at China Lake (with some NSF support acknowledged in.the

documentation). David Andes of China Lake has stated that one handful of these chips has more

computational power than all of the Crays in the world put together. This is critical in applications

where it is acceptable to add on a few extra chips, but not to haul along a Cray. Other companies -

- such as Syntonies in the U.S. and Oxford Computing in England -- have also come up with

impressive chips. Users without the technical knowledge (or clients) to wire up chips have reported

that the neural board by Vision Harvest, Inc. (which includes a special-purpose chip) offers some

of the same advantages. More and more products of this sort may be expected, especially if the

optical approach reaches maturity.

Fuzzy logic chips have also been developed. However, because of the complexity of fuzzy logic,

as normally practiced, these chips cannot take advantage of parallel distributed architecture as much

as neural chips do. At the recent conference in Houston on neural nets and fuzzy logic, the

Japanese developer of one of the leading fuzzy chips stated unequivocally that one could expect far

more computational throughput from a neural chip than from a fuzzy chip.

Harold Szu of the Naval Research Laboratories has often argued that digital parallel computers

constitute the real "fifth generation" of computers, as far beyond current PCs as the PCs are beyond
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the old I_SI mainframes. In a similar vein, he argues that fixed-function, analog distributed

hardware -- either VLSI or optical -- represents a sixth generation. The NSF program in

neuroengineering got its start when people like Carver Mead[12] -- often viewed as the father of

all VLSI -- and people llke Psaltis and Farhat and Caulfield (famous in optical computing) argued

that this sixth generation could achieve a thousand-fold or milllon-fold improvement in throughput

over even the fifth generation. The challenge was to find a way to use this hardware in a truly

general-purpose way. That is the goal which led to the neuroengineerlng program at NSF. Some

engineers would simply define an ANN as a general-purpose system capable (in principle) of

efficient implementation in such hardware.

A third reason for being interested in neural networks as such is their pedagogical value. The

importance of this should not be underestimated. For example, when I first published

backpropagation as a _ method for use with a__ functional network, it received relatively

tittle attention, in part because the mathematics were unfamiliar and difficult. Later, when several

authors (including myself) presented it as a method for use with simplified ANNs -- with interesting

interpretations, with nice flow charts using circles and lines, and with easy-to-use software packages

(exploiting the simplicity which comes from giving the user no choice of functional form) -- the

method became much better known[13]. Even now, for many people, it is easier to learn how to

use a new design in the ANN special case, and then generalize this knowledge, than it is to start

with the purest, most general mathematics. The explosion of interest in neural networks has also

been very useful in motivating a new generation of graduate students, with diverse ,m_,la,_l_, to

learn the relevant mathematics. The effort to attract graduate students from diverse and

nontraditional backgrounds -- especially women and minorities - is now a major national priority,

because of the changing composition of the young adult population in the United States.

A fourth reason for being interested in neurocontrol is the desire to be explicit about the link
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to the human brain. This link can be useful in both directions -- from engineering to biology, and

flom biology to engineering.

The output of the human brain as a whole syste_ is the control over muscles (and other

actuators), as illustrated in Figure 2. Therefore the function of the brain as a whole system is

INSERT FIGURE 2 (BRAIN)

control, over time, so as to influence the physical environment in a desired direction. Control is

not _ of what goes on in the brain; it is the function of the whole system. Even though lots of

pattern recognition and reasoning and so on occur within the brain, they are best understood as

subsystems or phenomena withirt a neurocontroiler. To understand the subsystems and phenomena,

it is most important to understand their function within the larger system. In short, a better

understanding of neurocontrol will be crucial, in the long-term, to a real understanding of what

happens in the brain. (For a more concrete discussion of this, see [113].) Because the mathematics

involved are general mathematics, they should be applicable to chips, to neurons, and to any other

substrate we are capable of imagining to sustain intelligence.

The brain is living proof that it is possible to build an analog, distributed controller which is

capable of effective planning (long-term optimization) under conditions of noise, qualitative

uncertainty, nonlinearity, and millions of variables to be controlled at once, all with a very low

incidence of falling down or instability. Control at such a high level necessarily includes pattern

recognition and systems identification as subsystems. Table 1 compares the five major design

strategies now used in neurocontrol against the four most challenging capabilities of the brain of

engineering importance.
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INSERT TABLE 1 (Matrix of capabilities versus methods)

Table 1 was developed two years ago[11], but it still applies to all the recent research which I

am aware of (except that a very few clever researchers llke Narendra have developed interesting

ways to combine some of these approaches). Supervised control is the strategy of building a neural

network which imitates a pre-existing control system; this is like expert systems, except that we copy

what a person _ instead of what he do__q_esand can operate at higher speed. Direct inverse control

builds neural nets which can follow a trajectory specified by a user or a higher-level system. Neural

adaptive control does what conventional adaptive control does, but it uses neural networks for the

sake of nonlinearity and robustness; for example, an ANN may learn how to track an external

Reference Model (as in conventional MRAC design). Backpropagating utility and adaptive critics

are two techniques for optimal control over time -- to maximize utility or performance, or to

minimize cost, over time. All five will be discussed in more detail in later sections.

Table 1 does suggest that we are now on a well-defined path to duplicating the most important

capabilities of the human brain. However, the human brain is more than just a set of cells and

learning rules. It is also a very _ mass of cells. For the next few years, it may be better to think

of ANNs as artificial mice (at best) rather than artificial humans. Mice are magnificent at some

very difficult control and even planning tasks, but they are not very good at calculus (or is it that

they don't pay attention?). Artificial humans are certainly possible, in my view, but there are many

reasons to move ahead one step at a time. Personally, I find myself most interested in the last

group of methods, because of its importance to understanding true intelligence; however, there are

many engineering applications where it pays to use a simpler approach, and the brain itself may be

a hybrid of many approaches.
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Areas of Application

Four major areas have been discussed at length [10,11] for possible applications of neurocontrol:

o Vehicles and structures

o Robots and manufacturing (espezially of chemicals)

o Teleoperation and aid to the disabled

o Communications, computation and general-purpose modeling (e.g. economies)

This paper cannot describe all these areas in depth, but a few words may be in order.

In vehicles and structures, the aerospace industry has been a leader in applying these concepts.

Unfortunately, the most exciting applications remain proprietary. NSF has been mainly interested

in sponsoring high-risk applications which in turn serve as lrisk-reducer_ in high-risk projects of

economic importance. Risk reduction comes from providing an alternative, back-up approach to

solving very difficult problems which conventional techniques may or may not be adequate to solve.

The National Aerospace Plane is a prime example. The goal is not to replace humans in space, but

to improve the economics required to make the human settlement of space a realistic possibility.

In October of 1990, NSF and McDonnell-Douglas are planning to jointly sponsor a technical

workshop on Aerospace Applications of Neurocontrol, which will hopefully serve to advance this

area. Barhen of the Jet Propulsion Laboratory has discussed a possible $15 million per year

initiative on neural networks from NASA, with a control component. Ideally, there should be

NSF/NASA cooperation here, so as to stimulate the development and testing of the most advanced

forms of neurocontrol.

The chemical industry has also been quite active. Major sessions have been held at the

American Control Conference and at the annual meetings of the chemical societies on this topic.

The Chemical Reaction Processes program at NSF is also planning a workshop in October, focusing

on neurocontrol, and laying the groundwork for expanded activity. The Bioengineering and Aid to
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the Disabled program has recently held a broad workshop, to prepare for its approved initiative in

this general area.

All of these new activities were motivated by interests expressed in the engineering community

itself. There are many cases where industry or industry-orlented researchers are coping with

fundamental issues which mainstream academics are barely beginning to address.

Supervised Control and Conventional Fuzzy_ Control

In the usual expert systems approach, a control strategy is developed by asking a human expert

how to control something. Supervised control is essentially the ANN equivalent of that approach.

In supervised control, the first task is to build up a training set -- a database -- which consists

of sensor inputs (_X) and desired actions (u). Once this training set is available, there are many

neural network designs and learning rules (like basic backpropagation) which can learn the mapping

from X to u.

Usually, the training set is built up by asking a human expert to perform the desired task, and

recording what the human sees (X) and what the human does (u_). There are many variations of

this, of course, depending on the task to be performed. (Sometimes the input to the human, X,

comes from electronic sensors, which are easily monitored; at other times, it may be necessary to

develop an instrumented version of the task, using teleoperatlon technology, as a prelude to building

the database.) The goal is essentially to "clone" a human expert.

Supervised control has two other applications besides cloning a human expert. First, it can

generate a controller which is faster than the expert. For example, a human might be asked to fly

a slowed-down simulated version of a new aircraft. The ANN could then be implemented on a

neural net chip, which allows it to operate at a higher speed -- higher than what a human could keep

up with. Second, it can be used to create a compact, fast version of an existing automated
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controller, developed from expert systems or control theory, which was too expensive or too slow

to use in real-time, on-board applications. Supervised control is similar, in a way, to the old

"pendant" system used to train robots; however, unlike the pendant system, it learns how to respond

to different situations, based on different sensor input.

When should we use supervised control, with ANN's (or other networks), and when should we

use fuzzy knowledge-based control?

Knowledge-based control is like following what a person _ while supervised control is like

copying what the person doe......_s.Parents of small children may remember the famous plea: "Do what

] say, not what I do." Knowledge-based systems obey this injunction. Supervised controll_rs do not.

There are many tasks where it is not good enough to ask people what they do, and foll.ow.those

rules. For example, if someone asked you how to ride a bicycle, and coded those rules up into a

fuzzy controller, the controller would probably fall down a lot. Your system would be like a child,

who just _ riding a bicycle, based on rules he learned from his mother. The problem is that

your knowledge of how to ride a bicycle is stored "in your wrists," in your cerebellum and in other

parts of your brain which you can't download directly into words. A supervised controller can

imitate what you do, and thereby achieve a more mature, complete and stable level of performance.

(This may be one reason why children have evolved to be so imitative, whether their parents like

it or not.) Other forms of ANN control can go further, and learn to do better than the human

expert; however, it may be best to inltializ¢ them by copying the human expert, as a starting point,

in applications where one can afford to do so.

The example here does not tell us that neurocontrol should be preferred over fuzzy logic in all

cases. As with the problem of learning a mapping, discussed above, the theoretical optimum is to

combine knowledge-based approaches and ANN approaches. As a practical matter, the theoretical

optimum is often unnecessary and too expensive to implement. However, there are tasks which are
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too difficult to do in any other way.

As an example, consider the problem of learning how to do touch-typing. Even a hutnan being

cannot Iearn to do touch-typing simply by hunting and pecking, and gradually increasing speed. In

a technical sense, we would say that the problem of touch-typing is fraught with "local minima," such

that even the very best neural network -- the human brain -- can get stuck in a suboptimal pattern

of behavior. To learn touch typing, one begins with a teacher, who explicitly conveys rules using

words. Then one fine-tunes the behavior, using neural learning. Then one learns additional rules.

Only after one has initialized the system properly -- by learning all the rules -- can one rely solely

on practice to improve the skill. Morita et all14] have shown how a tw0-stage approach --

knowledge-based control followed by backpropagation-based learning -- can improve performance,

in certain supervised control problems. There are other ways to deal with local minima, but they

comple.ment the use of symbolic reasoning, rather than compete with it.

Advanced practitioners of supervised control no longer think of it as a simple matter of mapping

X(t), at time t, onto u(t). Instead, they use past information as well to predict u_(t). They think of

supervised control as an exercise in "modeling the human operator." The best way to do this is by

using neural nets designed for robust modeling, or "system identification," over time. There is a

hierarchy of such ANN designs, the most robust of which has yet to be applied to supervised

control[10].

Supervised control with an ANN was first performed by Widrow[15]. Kawato, in conversation,

has stated that Fuji has widely demonstrated working robots based on supervised control. Many

other applications have been published.

Direct !nvcrse Control
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Direct inversecontrol is a highly specialized method, used to make a plant (like a robot arm)

follow a desired trajectory, a trajectory specified by a human being or by a higher-order plann_

system. The underlying idea is illustrated in Figure 3.

INSERT FIGURE 3 (Direct Inverse Control)

Let us suppose, for example, that we had a simple robot arm, controlled by two joints. One

joint controls the angle 0_, and the other determines 0_. Our goal is to move the robot hand to a

point in two-dimensional space, with coordinates X_ and Xa. We know that X: and X_ are functions

of 0_ and 0_. Our job, here, is to go backwards -- for ivgj2g.n_(_) X_ and X_, we want to calculate

the 0a and 0a which move the hand to that point. If the original mapping from 0 to X were

invertible (i.e., if a unique solution always exists for 0_ and 0_), then we can try to learn this inverse

mapping directly.

To do this, we simply wiggle the robot arm about for awhile, to get examples of 0a, 0_, and the

resulting Xa and X,. Then we adapt a neural network to input X: and X_ and output 0: and 0=. To

use the system, we plug in the de,red X: and Xa as input.

Miller[Ill has used direct inverse control to achieve great accuracy (error less than 0.1%) in

controlling an actual, physical Puma robot. Morita[14] has used direct inverse control with a fuzzy

network, but with an ANN learning rule, and claims that this is better than supervised control for

the same problem.

In direct inverse control, as in supervised control, it works better to think of the mapping

problem in a dynamic context[10], to get better results. This may explain why Miller has gotten

better accuracy than many other researchers using this method. (For example, some authors report

positioning errors of 4% of the work space. Miller's method may be like getting 4% error in
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reducing the remaining gap between the desired position and the actual position; as that gap is

reduced from one time step to the next, it should go to zero quite rapidly.)

Direct inverse control does not work when the original map from 0 to X is not invertible. For

example, if the degrees of freedom of the control variables (like 1") are more or less than the

degrees of freedom of the observable (like X), there is a problem. Eckmiller[16] has found a way

to break the tie, in cases where there are excess control variables; however, methods of this sort do

not fully exploit the value of additional motors in achieving other desirable goals such as smooth

motion and low energy consumption.

Kawato's "cascade method" (in [10]) and Jordan [17] describe more general ways of following

trajectories, which d..ooachieve these other goals, by rephrasing the problem as one of

control. They define a cost function as the error in trajectory following, _ a term for jerkiness

or torque change. Then they adapt a neural network to minimize this cost function. To do this,

they use the backpropagation of utility - a different ANN design, to be discussed later on.

Neural Adaptive Control

Neural adaptive control tries to do what conventional adaptive control does, using ANNs instead

of the usual llnear mappings. Because there are many tools used in conventional adaptive control,

this is a complex subject [1038-20].

One common tool in adaptive control is Model Reference Adaptive Control, where a controller

tries to make a system follow specifications laid down in a Reference Model. In the conference on

neural networks and fuzzy logic in Houston this year, Narendra described a straightforward way to

do this with ANNs. One can simply define a cost function to equal the _ between the output of

the reference model and the actual trajectory, and then minimize this cost function exactly as Jordan

and Kawato did -- by backpropagating utility. In actuality, one does not hav_ to use the
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backpropagation of utility to minimize this cost function; one could also use adaptive critic methods

here[10].

In adaptive control, the goal is often to cope with s]owly varying hidden parameters. There are

tw_._odifferent ways of doing this with ANNs, which are complementary. One is by real-tlme learning

-- where an ANN, like a biological neural network, adapts its weights in real time in response to

experience. Another is by adapting memory_ units which are capable of estimating the hidden

parameters. Even without real-time learning, it is poss_le to train an ANN offline so that it will

be adaptive in re.al-time, because of this memory[10]. Ideally, one would want to combine both

kinds of adaptation, but there is a price to be paid in so doing. The main price is that

backpropagation through time must be replaced by adaptive critics[10] both in control and in system

identification; the tradeoffs involved will be discussed in the next section.

In conventional, linear adaptive control it is often possible to prove stability algebraically in

advance by specifying a Liapunov function [18]. In nonlinear adaptive control, it is far more

difficult[20]. In actuality, however, the "Critic" networks to be discussed below function very much

like Liapunov functions (especially in the BAC design). For many complex, nonlinear problems,

it may be necessary to ad_fl_ a Liapunov function after the fact, and verify its properties after the

fact, rather than specify it in advance.

Backpropagating Utility. and Adaptive Critics

Ggneral tToncepts

Backpropagating utility and adaptive critics are two general-purpose designs for _ control,

using neural networks. In both cases, the user specifies a utility function or performance index to

be maximized, or a cost function to be minimized. In both cases, these designs will always have

more thap one ANN component. Different components are adapted by different learning rules,

aimed at minimizing or maximizing different things.
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There. v,LU always be an Action network, which inputs current state information (and perhaps

other information), and outputs the actual vector of controls, u(t). The utility function itself can

also be thought of as a network (the Utility network), even though it is not adapted. (Some earlier

papers talked about "reinforcement learning," which is logically a special case of utility

maximization[10,11].) In most cases, there will also be a Model network, which inputs a current

description of reality, R(t), and the action vector u_(t); it outputs a forecast of R(t+ 1) and of

X(t+ 1), the vector of sensor inputs at time t+ 1. (In some cases, the Model network can be a

stochastic network, which outputs simulated values rather than forecasts.) Finally, in the case oi"

Critic designs, there will be a Critic network, which inputs R(t) and possibly u(t), and outputs

something like an estimate of the sum of future utility across all future times. .. _.

The real challenge in maximizing utility over time lies in the problem of linking _ action

to future_ payoffs, across all future time periods. There are really only two ways to address this

problem, in the general case. One is to take a proposed Action network, and explicitly work out

its future consequences, for ev_Eg_future time period. This is exactly what the calculus of variations

does, in conventional control theory, and it is also what the backpropagation of utility does. The

backpropagation of utility is equivalent to the calculus of variations, but -- because derivatives are

calculated efficiently through large sparse nonlinear structures -- one may hope for less expensive

implementation. A second approach is to adapt a network which predicts; the optimal future payoff

(over all future times) starting from a given value for R(t+ 1), and to use that network as the basis

for choosing u_(t). This requires that we approximate the payoff function, J*, of dynamic

programming. This is the Adaptive Critic approach.

Rackpropagatlng Utili_

The backpropagation of utility through time is illustrated in Figure 4.
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INSERT FIGURE 4 (Backpropagating Utility)

In the backpropagation of utility, we must start with a Model network which has Ire.a_!r.g.L_dbeen

adapted, and a Utility network which has already been specified. Our goal is to _ the weights

in the Action network. (In practice, of course, we can adapt both the Action net and Model net

concurrently; however, when we adapt the Action net, we treat the Model net asif it were fixed.)

To do this, we start from the initial conditions, X(0), and use the _ weights in the Action

network to predict X(t) at all future times t. Then we use generalized backpropagation to calculate

the derivatives of tota.____]utility, across all future time, with respect to all of the weights in the Action

network. This involves backwards calcu!ations, following the dashed lines in Figure 4. Then we

adjust the weights in the Action network in response to these derivatives, and start all over again.

We iterate until we are satisfied. The mechanics are described in more detail in [1], but Figure 4

really tells the whole story.

The backpropagation of utility was in'st proposed in 1974121]. By 1988, there were four working

examples. There was the truck-backer-upper of Nguyen and Widrow, and the "cascade" robot arm

controller of Kawato, both published in [10]. There was Jordan's robot arm controner[17], and my

own official DOE model of the natural gas industry[22]. Recently, Narendra and Hwang have

reported success with this method.

The backpropagation of utility is a very straightforward and exact method. Unfortunately, there

have been few reported successes this past year. This may be due in part to a lack of

straightforward tutorials (though [1] and [22] should help). The biggest problem in practical

applications may be the difficulty of adapting a good Model network. In some applications, it may

be good enough to build a Model network which inputs X(t) and _u(t), which uses X(t+ 1) as its
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target, and contains time-lagged memory units (as described in [1]) to complete the state vector

description; however, in some applications, it is crucial to go beyond this, and insert special "sticky _

neurons - designed to represent slowly-varying hidden parameters -- and elements of robust

estimation [10].

The biggest limitation of backpropagating utility is the need for a forecasting model, which

cannot be a true stochastic model. In fuzzy logic, this is not so bad, because the variable being

forecasted may itself be a measure of likelihood or probability. In some applications, however -

like stock market portfolio optimization -- a more explicit treatment of probabilities and scenarios

may be important. There are tricks which can be used to represent noise, even when

backpropagating utility, but they are somewhat ad hoc and inefficient[10]. ..

Another problem in backprcpagating utility is the need to learn in an offline mede. The

calculations backwards through time require this. Various authors have devised ways to do

backpropagation through time in a time-forwards direction [e.g.23], but those techniques are either

very approximate or do not scale well with large problems or both; in any case, Narendra[19] has

questioned the stability of such methods. Nevertheless, even if we backpropagate utility in an

offl.ine mode, we can still develop a network which adapts in real-time to changes in slowly-varying

parameters; we can "learn offline to be adaptive online." [10]. This should be very attractive in

many applications, because true real-time learning is more difficult.

Adaptive Critics

Adaptive critic methods, by contrast, do permit true real-tlme learning and stochastic models,

but only at a price: they lack the exactness and simplicity of backpropagating utility. One reason

for their lack of simplicity is the wide variety of designs available - from simple 2-Net structures,

which work well on small problems, through to complex hybrids, which hopefully encompass what
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goes on in the human brain[10,11].

Adaptive critic methods may be defined, in broad terms, as methods which attempt to

approximate dynamic programming as f'ast descried in [24]. Dynamic programming is the 9__

exact and efficient method available to control actions or movements over time, so as to maximize

a utility function in a noisy, nonlinear environment, without making highly specialized assumptions

about the nature of that environment. Figure 5 illustrates the trick used by dynamic programming

to solve this very difficult problem.

Figure 5 (inputs and outputs of dynamic programming)

D2_r,amic programming requires as its input a utility function U and a model of the external

environment, F. Dynamic programming produces, as its major output, ano__09.Lb_function, J, which

I like to call a secondary or strategic utility function. The key insight in dynamic programming is

that you can maximize the function U, in the long-term, 9ver time, simply by maximizing this

function J in the immediate future. After you know the function J and the model F. it is then a

simple problem in function maximization to pick the actions which maximize J. The notation here

is taken from Raiffa[25], whose books on decision analysis may be viewed as a highly practical and

intuitive introduction to the ideas underlying dynamic programming.

Unfortunately, we cannot use dynamic programming _ on complicated probIems, because

the calculations become hopelessly complex. (Bayesian inference sometimes entails similar

complexities.) However, it is possible to approximate these calculations by using a model or

network to estimate the J function or its derivatives (or something quite close to the J function, like

the J' function of [26] and [27].) Adaptive critic methods may be def'u_ed more precisely as methods

which take this approach.
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If _kis _'d of design were truly fundamental to human intelligence, as I would claim, one might

expect to find it reflected in a wide variety of fields. In fact, notions llke U and J do reappear in

a wide variety of fields, as illustrated in Table 2 (taken from [28]):

*************************************************************************

Table 2 (Examples of J and U)

Please note that the last entry in Table 2, the entry for Lagrange multipliers, corresponds to the

derivative of J, rather than the value of J itself. In economic theory, the prices of goods are

supposed to reflect the _ in overall utility which would result from changing your level of

consumption of a particular good. Likewise, in Freudian psychology, the notion of emotional charge

associated with a particular obiect corresponds more to the _ of .1; -Lnfact, th_ original

inspiration for backpropagatlon[29] came from Freud's theory that emotional charge is passed

backwards from object to object, with a strength proportionate to the usual forward[ association

between the two objects[30]. The Backpropagated Adaptive Critic (BAC) design reflects that theory

very closely. The word "pleasure" in Table 2 should not be interpreted in a narrow way; for

example, it could include such things as parental pleasure in experiencing happy children.

In order to build an adaptive critic controller, we need to specify two things: (1) how to adapt

the Action network in response to the Critic; (2) how to adapt the Critic network.

The most popular adaptive critic design by far is the 2-network arrangement of Barto, Sutton

and Anderson[31], illustrated in Figure 6. In this design, there is no need for a model of

the process to be controlled. The estimate of J is treated as a gross reward or

*******************************************************************************

Figure 6. The 2-Net Design of Barto, Sutton and Anderson

******************************************************************************
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punishment signal. This design has worked well on a wide variety of real-world problems, including

robotics[32], autonomous vehicles and fuzzy logic systems. Williams, in [20], has reported some

interesting new results on convergence. Unfortunately, this approach becomes very slow as the

number of control variables or state variables grows to 10 or 100. The reason for this is very

straightforward: knowing J is not enough to tell us _ actions were responsible for success or

failure, and it does not tell us whether we need _ or less of any component of the action vector.

This design is like telling a student that he or she did "well" or "poorly" on an exam, without

pinpointing which answers were right or wrong; it is a lot harder for a student to improve

performance when he or she has no specific idea of what to work on.

Fortunately, there are alternative designs which can overcome this problem. Note that it is

critical to modify both the Action network and the Critic network, to permit learning at an

acceptable speed when the number of variables is large (as in the human brain). There are also

some other tricks which can help, discussed by myself, by Barto, and by Sutton [10,11,20].

To speed up learning in the Action network, for arl0zggproblems, there are now two major

alternatives: (1) the Backpropagated Adaptive Critic (BAC), shown in Figure 7;

(2) the Action-Dependent Adaptive Critic (ADAC), shown in Figure 8.

Insert Figures 7 and 8: BAC and ADAC (as adapting Action net)

The BAC design is closer to dynamic programming than is the 2-net design, because there is a more

explicit attempt to pick !!(t) so as to maximize J(t+ 1), based on the use of generalized

backpropagation to calculate the derivatives of J(t + 1) with respect to the components of u(t). The

dashed lines in Figure 7 represent the calculation of derivatives. (Usually we adapt the _ in

the action network in proportion to these derivatives, rather than adapting u_(t) itself.) The cost of
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BAC is that we need to develop a Model network, as we do when backpropagating utility. The

adaptation of a good dynamic model can be a challenging task at times[10].

ADAC [26,27] avoids the need for an explicit model, but the Critic network in Figure 8 would

have to represent the combin.atlort of the Critic and Model in Figure 7. Jordan, in conversation,

has stated that he adapted an action-dependent Critic network in 1989, based on an independent

paper by Watkins on "Q learning" (discussed in [20]), but found the resulting Critic network to be

rather complex. In an ideal world, one would want to combine both approaches, so as to combine

the modularity and cleanliness of BAC with the model-lndependent robustness of ADAC; however,

BAC may be good enough by itself in many applications. Jameson has reported some preliminary

results with BAC[33], and other aerospace-oriented researchers may have dealt with larger

applications; however, more work is needed. Whatever the details, the adaptation of Action

network in large-scale problems is clearly central to the future of this discipline and of our ability

to understand organic intelligence.

In adapting the Critic networks, few people have gone beyond simple, scalar methods which are

more or less equivalent[34] and which have severe scaling problems. There are two alternatives

which should scale much better: (1) Dual Heuristic Programming (DHP), which outputs estimates

of the derivatives of J; (2) Globalized DHP (GDHP), which outputs an estimate of J (or its

components), but which adapts the Critic by minimizing error in the implied derivatives as well as

the estimate of J. These methods were In'st proposed in the 1970s [23,24], but are described in

more modern language in [10] and [11]. Both methods _ the existence of a Model network.

Hutchinson of BehavHeuristics has claimed real-world commercial success in applying such methods,

but many of the details are proprietary.

Example of a Hybrid System
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In i_88, a friend of mine asked how I would use these methods to assist in some very complex

social decision problems, well beyond the scope of this paper. Given the nature of his application,

I recommended a very conservative approach for the time being. As a first stage, I would obtain

a conventional sort of modeling system, capable of storing and analyzing time-series data, and

capable of manipulating forecasting models built up from any of three methodologies: (1)

econometric-style equations; (2) fuzzy logic; (3) ANNs. I would look for a Iink.i_i_i_i_i_i__gcapability, so that

models of specific sectors (built up from different methodologies and often revised) could be

combined together to yield composite streams of forecasts. Then I would build a general purpose

"dual compiler." The dual compiler would input a sectoral mode/(in text form or parsed into a

tree), and output a "dual subroutine" (like those in [1]), so as to facilitate the use of ge0eralized

backpropagation. Then I would implement a whole set of tools using backpropagation.

Tool number one would be a simple sensitivity analysis tool. The user would type in a utility

function or target function. The tool would then calculate the derivatives of utility with respect to

all of the inputs -- initial values, policy variables, and parameters -- which affected the original

forecast, in one quick sweep through the process. It would report back the ten or the hundred most

important inputs. (There is a scaling problem here in deciding which input is most important; the

user could be given a choice, for example, between looking for the biggest derivatives, the biggest

elasticities, or the biggest derivatives weighted by some other variables.) The user could go on to

make plans to cha_h_a_nggthese inputs, so as to increase utility, or he could fhst evaluate in detail

whether he believes that the inputs are really important. (Tests of this sort can in fact be very

useful in pinpointing weaknesses of an integrated modeling system[8], or real-world uncertainties

which require more analysis). The _ of a comprehensive sensitivity analysis is the key issue here;

using more conventional tools, one must often wait a long time and spend a lot of money to get

even a partial sensitivity analysis, and the results are usually out of date.
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Tool number two would help in reassessing the importance of the key inputs. For any given

input, it would use the intermediate information generated by backpropagation (as in [8]) to identify

the path of connections which really made that input important. It could even display this

information as a kind of tree or flow chart. This would be similar in purpose to the inference

sequences printed out as "explanations" by many expert systems.

Tool number three would be an extended version of tools one or two. Instead of first

derivatives, it would provide information based on low-cost second derivatives (as described in [23],

based on calculations like those in [5,11]). For example, the sensitivity of utility to dollars spent in

1992 may be a key measure of policy effectiveness; it may be useful to see how that measure, in

turn, would be changed by other factors (such as diminishing returns or complementary variables).

At the optimum, the first derivative of utility with respect to any policy variable will be zero; the

derivatives of _ derivative give information about why the policy variable should be set at a

particular level

Tool number four would be a full-fledged version of backpropagating utility. The user could flag

certain variables or parameters as policy variables, and the computer would be asked to suggest an

optimal improvement upon current plans, so as to maximize utility. The resulting suggestion may

be a local minimum, but it should at least be better than the starting p!ans.

Too! number five would be a model calibration tool, based on the backpropagation of error, and

robust estimation concepts like those of [10]. At a minimum, this would be a relatively quick and

objective way to calibrate a model as a whole system to fit the past; it could replace the rather

elaborate and ad hoe "tweaking" which usually goes into most complex models in the real world for

calibration purposes. Tool number six would go back and identify how the resulting parameter

estimates or rules were influenced by different eases in the input dataset; this would provide an

integrated, nonlinear version of the highly respected linear diagnostic tools developed by Belsley,
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Kuh and Welsch[35].

These six tools are the most obvious needed tools, exploiting backpropagation, but a host of

other tools are possible involving estimation diagnostics, decision diagnostics and convergence tools.

Also, there is no need to develop the six tools in the order of my discussion.

In principle, one can even build a strategic assessment or stochastic planning tool based on

adaptive critic methods but permitting user-specified assessment models, as described in [28].

To bring all these tools together in a general-purpose modeling package, capable of running on

desktop workstations, would not be a trivial task. However, there are important applications, and

some work has begun in this direction. All of these tools aim at effective two-way man-machine

communication, so as to exploit the capabilities of both forms of intelligence.

Conclusions

Neurocontrol and fuzzy logic are complementary, rather than competitive, technologies. There

are numerous ways of combining the two technologies. Which combination is best depends very

heavily on the particular application; there is always a tradeoff between "general syntheses" -- which

combine everything but require the expense of implementing everything -- and direct, simple designs

tuned to particular concrete problems. Given the natural human tendency towards inertia, it is

critical to be aware of a wide variety of options, and to ask "Why not?" when considering new

approaches. Even within neurocontrol, there is a wide variety of designs available, ranging from

simple off-the-shelf technologies (easily applied to fuzzy logic networks) through to areas where

fundamental research is still needed and vital to our understanding of real intelligence.
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